Simultaneous Estimation of Microphysical Parameters and the Atmospheric State Using Simulated Polarimetric Radar Data and an Ensemble Kalman Filter in the Presence of an Observation Operator Error

نویسندگان

  • YOUNGSUN JUNG
  • MING XUE
  • GUIFU ZHANG
چکیده

The impacts of polarimetric radar data on the estimation of uncertain microphysical parameters are investigated through observing system simulation experiments when the effects of uncertain parameters on the observation operators are also considered. Five fundamental microphysical parameters (i.e., the intercept parameters of rain, snow, and hail and the bulk densities of snow and hail) are estimated individually or collectively using the ensemble square root Kalman filter. The differential reflectivity ZDR, specific differential phase KDP, and radar reflectivity at horizontal polarization ZH are used individually or in combinations for the parameter estimation while the radial velocity and ZH are used for the state estimation. In the process, the parameter values estimated in the previous analysis cycles are used in the forecast model and in observation operators in the ensuing assimilation cycle. Analyses are first performed that examine the sensitivity of various observations to the microphysical parameters with and without observation operator error. The results are used to help interpret the filter behaviors in parameter estimation. The experiments in which either a single or all five parameters contain initial errors reveal difficulties in estimating certain parameters using ZH alone when observation operator error is involved. Additional polarimetric measurements are found to be beneficial for both parameter and state estimation in general. It is found that the polarimetric data are more helpful when the parameter estimation is not very successful with ZH alone. Between ZDR and KDP, KDP is found to produce larger positive impacts on parameter estimation in general while ZDR is more useful in the estimation of the intercept parameter of hail. In the experiments that attempt to correct errors in all five parameters, the filter fails to correctly estimate the snow intercept parameter and the density with or without polarimetric data, seemingly due to the small sensitivity of the observations to these parameters and complications involving the observation operator error. When these two snow parameters are not corrected during the estimation process, the estimations of the other three parameters and of all of the state variables are significantly improved and the positive impacts of polarimetric data are larger than that of a five-parameter estimation. These results reveal the significant complexity of the estimation problem for a highly nonlinear system and the need for careful sensitivity analysis. The problem is potentially more challenging with real-data cases when unknown sources of model errors are inevitable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Estimation of Microphysical Parameters and Atmospheric State using Simulated Polarimetric Radar Data and Ensemble Kalman Filter in the Presence of Observation Operator Error

The impact of polarimetric radar data on the estimation of uncertain microphysical parameters is investigated when the effect of uncertain parameters on the observation operators is also considered. Five fundamental microphysical parameters, i.e., the intercept parameters of rain, snow and hail and the bulk densities of snow and hail, are estimated individually or collectively using the ensembl...

متن کامل

Assimilation of Polarimetric Radar Data Using Ensemble Kalman Filter: Experiment with Simulated Data

Since the use of differential reflectivity for rainfall estimation was first proposed by Seliga and Bringi (1976), many studies have shown that polarimetric measurements can improve precipitation type classification and quantitative precipitation estimate (Straka et al. 2000). Moreover, the polarimetric radar (PR) upgrade plan of the National Weather Services (NWS) for the operational WSR-88D n...

متن کامل

Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables

i Abstract A radar simulator for polarimetric radar variables including reflectivities at horizontal and vertical polarizations, the differential reflectivity and the specific differential phase, has been developed. This simulator serves as a testbed for developing and testing forward observation operators of polarimetric radar variables that are needed when directly assimilating these variable...

متن کامل

Adaptive Fusion of Inertial Navigation System and Tracking Radar Data

Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008